Parallelogram, with Theorems

 about Opposite Sides and
Angles

Statements	Reasons
1.) $P Q T S$ is a rhombus	1.) Given
with diagonal $P R$	2.) Rhombus --> each
2.) $P T$ bisects	diag. bisects opp. angles
3.) $X Q P R \cong X P R$	3.) Def. of angle bisector
4.) $P Q \cong P S$	4.) Def. of rhombus
5.) $P R \cong P R$	5.) Reflexive prop.
6.) $\triangle Q P R \cong \triangle S P R$	6.) SAS
7.) $R Q \cong R S$	7.) CPCTC

Definition of a Theorem: The opposite sides and angles of a parallelogram are equal to one another, and either of its diameters bisects its area.

Definition of a parallelogram with opposite sides: A 4-sided flat shape with straight sides where opposite sides are parallel.

Write-up by Brenda King
Theorem 1.27, part 3.
A quadrilateral is a parallelogram if and only if each pair of opposite angles is congruent.

Proof: From 1.26, in a parallelogram, diagonals will form congruent triangles.
By corresponding parts of congruent triangles, the opposite angle will be congruent (see earlier work)

Coversely, given opposite angles are congruent, show the quadrilateral is a parallelogram.

We know the sum of the angles in a 4 -gon is $360^{\circ}=2 x+2 y$ or $180^{\circ}=x+y$.
By theorem 1.21, two lines are parallel if and only if a pair of interior angles on the same side of a transveral is supplementary, so we know $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$ and $\overline{\mathrm{AD} \| \mathrm{BC}}$.

A parallelogram has at least one pair of parallel sides.
Therefore quadrilateral ABCD is a parallelogram.

Real life examples:

