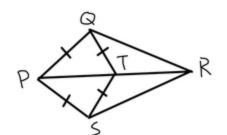
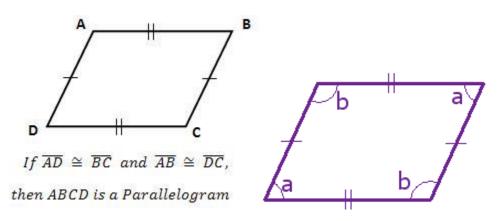
Parallelogram, with Theorems about Opposite Sides and Angles



3	Statements	Reasons
	 PQTS is a rhombus with diagonal PR PT bisects)≰QPR≅≰SPR)Q≅PS)PR≅PR)∆QPR≅∆SPR)Q≅RS 	 1.) Given 2.) Rhombus> each diag. bisects opp. angles 3.) Def. of angle bisector 4.) Def. of rhombus 5.) Reflexive prop. 6.) SAS 7.) CPCTC

Definition of a Theorem: The opposite sides and angles of a parallelogram are equal to one another, and either of its diameters bisects its area. Definition of a parallelogram with opposite sides: A 4-sided flat shape with straight sides where opposite sides are parallel.



Write-up by Brenda King

Theorem 1.27, part 3.

 ${\it A}$ quadrilateral is a parallelogram if and only if each pair of opposite angles is congruent.

Proof: From 1.26, in a parallelogram, diagonals will form congruent triangles. By corresponding parts of congruent triangles, the opposite angle will be

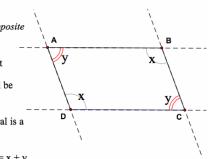
congruent (see earlier work)

Coversely, given opposite angles are congruent, show the quadrilateral is a parallelogram.

We know the sum of the angles in a 4-gon is $360^{\circ} = 2x + 2y$ or $180^{\circ} = x + y$.

By theorem 1.21, two lines are parallel if and only if a pair of interior angles on the same side of a transveral is supplementary, so we know $\overline{AB}||\overline{DC}$ and $\overline{AD}||\overline{BC}$.

A parallelogram has at least one pair of parallel sides. Therefore quadrilateral ABCD is a parallelogram.



Real life examples:

